
J .  Membrane Biol. 10, 171 - -  192 (1972) 
�9 by Springer-Verlag New York Inc. 1972 

Transport of Ions of One Kind through Thin Membranes 
II. Nonequilibrium Steady-State Behavior 

R. de Levie, N. G. Seidah, and H. Moreira ~ 

Department of Chemistry, Georgetown University, Washington, D. C. 20007 

Received 31 May 1972 

Summary. The equation for steady-state movement of ions of one kind through 
planar membranes has been solved. Numerical results are given, as well as profiles of 
potential, field and concentration. For small deviations from the equilibrium potential, 
an essentially constant intrinsic membrane conductance is obtained, which can be cal- 
culated from equilibrium properties. For larger deviations from equilibrium, the intrinsic 
membrane conductance is still essentially constant for symmetrical interfacial concen- 
trations of the permeable ion, but varies significantly with potential for asymmetric 
interracial concentrations, especially if these concentrations are small. In the latter case, 
one can often use the constant field approximation, for which explicit expressions are 
presented. 

In a preceding paper (de Levie & Moreira, 1972, hereafter called Part I), 

we have discussed the equilibrium solutions of the basic equation for 

transport of ions of one kind through a thin membrane, 

dE 1 2 
dS ~-~-E = i s + A .  (1) 

We will now consider the more general case in which current flows. Some 

formal solutions of Eq. (1) were obtained by Skinner (1955) and will be 

used as our point of departure. Alternative derivations were subsequently 
given by Wright (1961) and by Sinharay and Meltzer (1964). By analogy 

with the treatment in Part I, three separate cases must be considered; 

namely, is + A ~0 .  

Introduction of the new variables 

E 

y - - i - - -  T ( y  ) (2) 
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and 

R. de Levie et al. : 

i s + A  
z--- (2 iz) + (3) 

transforms Eq. (1) into the Ricatti equation 

dy 
dz  Y2 + z=O" (4) 

When z > 0, the solution of Eq. (4) is 

• C1 I+(a) + C 2 I_~_(~) 
y = - z= C1 I_+(a) + C 2 I+(.)  (5) 

- e + _  1 / 2  , .  s + A )  + (6 )  

whereas one obtains for z < 0 
y= _(_z)+ cl :+(r)-c2s_+(r) 

CI J- + (r) + C2 J+ (r) (7) 

r = ~ ( -  z) + = ~ ( -  i s - A) +. (8) 

In Eq. (7), J: (r) denotes a Bessel function of order v and real argument r ;  
likewise, in Eq. (5), I:(a) represents a modified Bessel function of order v 
and real argument a. The dimensionless field E follows directly from 
Eqs. (2) and (5) or (7), and the corresponding expressions for the dimension- 
less potential ~o or the dimensionless concentration y are obtained through 
use of the Poisson equation; see Eq. (I-6) ~ 

The More Symmetrical Case, is + A < 0 

From Eq. (7) we obtain 

go=_2 in (~o)  + pJ-+(r)+J+(r) 
p J-  + (rio) + J+ (rio) 

( -2A) + 
ro=rs=o-  6i 

i 2 P 4 ( f l ) - J - + ( f l )  
E = T ~  ~ ( - i s - A )  pj_+(fl)+ j+(fi) 

,. ~ [ P J+ (fi) - a-k (fl) 1}. ,=( - i  s - m l  ~ p ~ . )  2 + 

For s =0, Eq. (12) yields 

%= -a [,(p4(Bo)-J-+(Bo) 1}. 
[ \  p J- + (fio) + J+ (fio) ") 2 + 

1 The notation Eq. (I-6) refers to Eq. (6) in Part I. 

(9) 

(10) 

(11) 

(12) 

(13) 
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In Eq. (9) we have already implied that 9 = 0 for s = 0. For  s = 1 we have 

v = - 2 1 n  ( fll ~ "~ PJ-r Jr (14) 
[to / P J-+ (flo) + Jr (flo) 

f l ,=&=,=-~ (--i--A) (15) 

SO that the integration constant p can be expressed as 

fl~o Jr (rio) -- eV/2 fl~ Jr (ill) (16) 
P = d/2 fl~ J-r J-r 

The Less Symmetrical Case, is + A > 0 

Eq. (5) now yields 

q,=-21n- qI_~(a)+I+(a) 
ao / qI-~(ao)+I~(oto) 

(2A) ~ 
a ~ 1 7 6  6i 

i - -  q I }  (a)  + I _  } (a) 
E=]-~ V2(is+A) qI_r 

s q I~ (o0 + I_ ~ (a) ~=(/ +A) {( ql_~(a)+ir 

,o=A { (.q I~(%)+ l-*(%).) 2-1} 
q I_r + Ir 

( 11 r v = - 2 In ~-~-o ! q 1_ r (%) + 1r (%) 

a, =~s= 1 = ~-~- (i + A) ~ 

aa tr ( % ) -  e 0/2 a~ 1~ (~1) 
q = e V / 2  • • �9 a~ I-r I_r 

(17) 

(28) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

The Intermediate Cases Including is + A =0 

The solution for is+A---O is identical to that given in P a t t i  under 
A =0, and need not be repeated here. It might be noticed that the cross- 
over between the three sets of solutions for is+A ~0 will, in general, 
occur at some place inside the membrane, since the condition is+A=O 
can only be met at one particular value of s when i4  0. At that value of s, 

12 J. Membrane  BioL 10 
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Eqs. (I-44) to (I-46) apply. At such a cross-over in the mathematical de- 
scription, the potential, the field and the ionic concentration must all be 
continuous functions of s. 

When A <0 but A + i  >0, it is convenient to combine Eqs. (17) and (22) 
into 

go = v - 2  In (~]g- q I-~(cO+I}(a) (25) 
\ ~ 1 i  qI-~(cq)+I4(~t) " 

As s approaches -A l l  and ~ and 8 go to zero, continuity of go as expressed 
by Eqs. (9) and (25) yields 

v = - 2 1 n [ ~ l ~  Z qI-*~(~l)+I* (~1) (26) 
trio/ q pJ-~(8o)+G(G)" 

Likewise, continuity of the fields expressed by Eqs. (11) and (19) requires 

p = - q (27) 

and insertion of this result into Eq. (26) yields 

- ]  e~ I ~ ( a l )  + J*,(flo) 
o] p= ,_ (28) 

( ~1 ~" v/2,_~(~1)_ a_~(8o ) [80 ] 

When A > 0 but A + i <0, we combine Eqs. (9) and (14) into 

4o=v-21n (~-t) ~ PJ -} (8 )+4(8)  (29) 
P z - d & )  + z.,(8,) 

Comparison of Eqs. (17) and (29) at s =Aft (so that ~, 8-+ 0) results in 

v = - 2 1 n  ( 8~ ~ ~ q-- Pg-~(S1)+J}(81) (30) 
\~o] P qI-~(eo)+I~(eo) 

which can be combined with Eq. (27) to yield 

( So ~ ~ e-V/2 l~_(ao) + J,~-(8~) 

P= ( go ~*" (31) 
\81 ] e-V/2I-}(%)-d-~(Si) 

Numerical Evaluation 

As in Part I, solutions are sought for fixed interracial concentrations 
Yo and Yl. For given values of 7o, h and i, and an initial estimate for A, 
all needed (normal and modified) Bessel functions are first calculated, 
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Table 1. Dimensionless current i, voltage v, conductance g and integration constant A 
calculated for ~'o = ~ = 0.01 ~ 

i A v g g c f  

0 -0 .0099 8752 0 0.0100 0.0100 
2 . 1 0  -8 -0 .0099 8753 0.0000 0201 0.0100 0.0100 
2 . 1 0  -7 -0 .0099 8762 0.0000 2002 0.0100 0.0100 
2" 10 -6 --0.0099 8801 0.00020016 0.0100 0.0100 
2" 10 -5 --0.0099 9552 0.0020 0257 0.0100 0.0100 
2 '  10 -4 --0.0098 8719 0.0200 1666 0.0100 0.0100 
2" 10 -a 0.0090 4579 0.2001 6645 0.0100 0.0100 
2" 10 -2 1.98314297 2.00156435 0.0100 0.0100 
0.2 199.9801 086 20.0044 9920 0.0100 0.0100 
0.5 1,249.9806 66 50.0047 9949 0.0100 0.0100 

a Equilibrium data are shown for comparison under i =  0, and the conductances cal- 
culated with the constant-field approximation are listed under gc f .  

Table 2. Dimensionless current i, voltage v, conductance g and integration constant A 
calculated for 70 =0.0001, ~,1 =0.01 

i A v g g c f  

- -5"  10 -2 12.3590 1426 --4.9683 1627 0.00522 0.00522 
- - 2 - 1 0  -~ 1.2845 0794 --1.6005 1222 0.00322 0.00322 
- -1"  10 -2 0.0001 4814 --0.0205 6984 0.00216 0.00216 
- -2"  10 -3 3.0663 8925 2.4773 2725 0.00094 0.00094 
- - 2 . 1 0  -4 8.9108 3423 4.2220 9103 0.00052 0.00052 

0 10.6016 4689 4.6051 7019 0.00047 0.00047 
2" 10 - s  10.8031 5590 4.6487 1887 0.00046 0.00046 

a See footnote a, Table 1. 

Table 3. Dimensionless current i, voltage v, conductance g and integration constant A 
calculated for ~'o = Yl = 1 

i A v g g c f  

0 --0.8925 2241 0 0.9262 1.0000 
2" 10 -6 --0.8925 2?46 0.0000 0216 0.9262 1.0000 
2 - 1 0  -5 --0.8925 3246 0.0000 2159 0.9262 1,0000 
2 . 1 0  -4 --0.8926 2244 0.00021594 0.9262 1.0000 
2 . 1 0  -3 --0.8935 2068 0.0021 5938 0.9262 1.0000 
2 - 1 0  -5 --0.9022 8974 0.0215 9346 0.9262 1.0000 
0.2 --0.9692 5327 0.2159 2348 0.9263 1.0000 
0.5 --0.9716 7021 0.5396 6331 0.9265 1.0000 
1 --0.8121 7183 1.0783 1486 0.9274 1.0000 
2 0.4133 5989 2.1492 8486 0.9305 1.0000 
5 10.5985 2129 5.2928 9089 0.9447 1.0000 

12" 
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Table 4. Dimensionless current i, voltage v, conductance g and integration constant A 
calculated for ~o = 0.01, Yl = 1 

i A v g g o :  

--5.0 15.4820 7947 --5.2398 9384 0.5079 0.5224 
--4.0 9.9380 9324 --4.1588 6941 0.4564 0.4691 
--3.0 5.3889 0496 --3.0165 2353 0.3936 0.4038 
--2.0 1.9238 8696 --1.7402 7215 0.3152 0.3224 
--1.0 0.0252 6656 --0.1009 2322 0.2125 0.2162 
--0.75 0.0381 8944 0.4545 5317 0.1807 0.1835 
--0.50 0.5240 2852 1.1533 7100 0.1449 0.1468 
--0.25 2.1538 9682 2.1699 3468 0.1027 0.1038 
--0.10 4.9379 3728 3.2113 9748 0.0717 0.0724 
--0.02 8.6851 0150 4.2189 7507 0.0518 0.0522 

0 10.3931 1056 4.6051 7019 0.0462 0.0465 
0.002 10.5966 9499 4.6490 5591 0.0456 0.0459 
0.02 12.8150 6805 5.1028 5192 0.0402 0.0405 
0.10 50.4072 7144 10.0563 3909 0.0183 0.0184 
0.20 199.9801 887 20.0069 7134 0.0130 0.0130 

Table 5. Dimensionless current i, voltage v, conductance g and integration constant A 
calculated for Y0 = ~'1 = 100 

i A v g g c f  

0 -11.8844 8548 0 18.7822 100.00 
2 . 1 0  -4 --11,8845 9040 0.0000 1065 18.7823 100.00 
2" 10 -3 --11.8854 9043 0.0001 0648 18.7823 100.00 
2" 10 -2 --11.8944 9043 0.00106483 18.7823 100.00 
2 . 1 0  -1 --11.9844 9051 0.0106 4911 18.7809 100.00 
2 --12.8780 0157 0.1064 7913 18.7830 100.00 

20 --21.2413 6327 1.0604 3586 18.8602 100.00 
50 --33.0326 9491 2.5995 5250 19.2341 100.00 

100 --48.1174 6254 4.9352 7511 20.2623 100.00 
200 --68.4789 5759 8.8315 1456 22.6462 100.00 

Table 6. Dimensionless current i, voltage v, conductance g and integration constant A 
calculated for ~o = 1, ~'1 = 100 

i A v g g c :  

--100 51.9467 0732 --4.3077 0494 11.2197 21.6220 
--75 34.0278 0983 --2.9761 7399 9.8927 18.3549 
--50 17.5846 0106 --1.4122 1875 8.3093 14.6841 
--20 1.8128 0956 1.1398 4478 5.7715 9.4002 

--2 0.4440 8012 4.0236 9371 3.4395 5.2213 
--0.2 1.8595 4357 4.5413 3467 3.1331 4.7101 

0 2.0647 1068 4.6051 7019 3.0981 4.6517 
0.02 2.0858 4696 4.6116 3312 3.0946 4.6458 



Single Ion Transport through Membranes. II 177 

using the criteria A X0 and A +i  ><0. Asymptotic expansions are used for 
arguments with absolute magnitudes larger than 40, otherwise the normal 
ascending series are used. Subsequently, v is calculated by a Newton- 
Raphson iteration for 71, using the appropriate formalism (e.g., Eqs. (12) 
and (16) for the case A <0, A + i<0)  and this value of v is then used to 
calculate (?o)ca~o. When (?o)oa~ <?o, A is incremented (and likewise A is 
decremented when (~o)o~o > ?o) and the calculation repeated, until 

1(~0)o~,o-Yo[ <10-s ?0. 

(In the few cases in which (d 2 ?/dsZ)s=o <0, the change in A is in the direc- 
tion opposite to that mentioned above.) Most calculations were restricted 
to the experimentally accessible range - 5  ~<v~< +5, and were performed 
on an IBM 360-40 computer of the Georgetown University Computation 
Center. 

Some numerical results are shown in Tables 1 through 6. These represent 
calculations with either symmetrical (1, 3, 5) or asymmetrical (2, 4, 6) 
interracial concentrations, and at either low (1, 2), medium (3, 4) or high 
(5, 6) ionic concentrations. Some corresponding profiles of dimensionless 
concentration, electric field and potential across the membrane are shown 
in Figs. 1 through 4. 

We will first discuss those results for which the excursions from equilib- 
rium are small, subsequently those obtained at low ionic concentrations, 
and finally the general results at medium and high concentrations. 

Results for Small Deviations from Equilibrium 

For all currents for which v is close to its equilibrium value, vo a = 
In ~1/?o, the dimensionless potential v varies with i in an essentially linear 
fashion. After subtraction of vo a, a direct proportionality is obtained. 
Thus, for small deviations from equilibrium, the intrinsic current-voltage 
curve of the membrane is linear when we consider the quantity v-vo a as 
the effective dimensionless voltage, analogous to the dimensionless over- 
voltage -nFq/RT in conventional electrochemistry. We use the term 
"intrinsic" here to denote that the interfacial concentrations ?o and rl are 
considered to be constant. Note that mass transport in the aqueous solutions 
adjacent to the membrane can greatly affect the overall current-voltage 
curves (LeBlanc, 1969, 1971) as can the double layers in those aqueous 
solutions (McLaughlin, Szabo, Eisenman & Ciani, 1970; McLaughlin, 
Szabo & Eisenman, 1971). Such complications are not considered here, 
but will be taken up in Part III. 
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Fig. 1. Profiles of dimensionless concentrat ion 7, field E and  potential  o across the 
membrane  (0 < s -<_ 1) for ~o = 1 0 - 4 ,  71 = 10-2 and  various values of i as indicated with 
each curve. The curves were calculated from the data in Table 2, but  are indistinguishable 

from curves calculated using the constant-field approximation,  Eqs. (47)-(55) 

Since the intrinsic current-voltage curve is linear for V--Veq 41, it is 
useful to define a dimensionless intrinsic membrane conductance as 

i 
g-~ v -  Veq" (32) 

Clearly, for small deviations from equilibrium, we have 

g ~ g~q (33) 

and it is worthwhile to consider the equilibrium behavior of g in more 
detail. 
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The Intrinsic Equilibrium Conductance 

We write the Nernst-Planck relation, Eq. (1-1), in dimensionless form as 

or, after rearrangement, 

~ _  do  (34) 
i = -  +~ ds 

i 
- - d s =  -dlnT+d~o. (35) 

Since i is independent of s, integration yields 

1 ds 
i] = - In , 1 +  v = v-/)r (36) 

6 7 70 
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Fig. 1 C 

so that the intrinsic membrane conductance can be defined, in dimensionless 
form, as 

i 1 

--" i ~ 
g-- v-veq ds (37) 

o 7 

This result (Teorell, 1953; Eisenman, Ciani & Szabo, 1968) clearly shows 
that g remains finite and well-defined when v - v e q  and consequently i 
approach zero. Pertinent new aspects for the steady-state current-voltage 
behavior are that g'~geq for [v-veq] 41 and that gcq can be obtained 
directly from the equations given in Part I. Integration of Eq. (I-30) yields 
for the more symmetrical case (A < 0) 

2b2(p 2 + 1) 4b Vo 
g e q  = 1 =2b( l+ .p2)+( l_p2) s in2b+4ps in2  b (38) 

S(psinbs+cosbs)Z ds 
0 
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Fig. 2 A 

Fig. 2. Profiles of dimensionless concentration y, field E and potential r across the mem- 
brane (0__<s__< 1) for ~'0 = 10-z, ~'1 = 1 and various values of i as indicated with each 

curve. The curves were calculated from the data in Table 4 

whereas  one  ob ta in s  f o r  the  less sym m e t r i c a l  case (A > 0) 

2a2 (q2- -1 )  4a~o 
- ( 3 9 )  geq - -  1 2 a (1 - q2) q.. ( 1  -[- q2) sinh2 a + 4 q sinh 2 a" 

~ (q sinhas+coshas) 2 ds 
o 

F o r  the  special  case A - -0  one  f inds  

2 6 
(40) 

g e q - -  1 - -  3 r 2 + 3 r + l  �9 
~(s+r)2ds 
o 
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The dependence of geq on 7o at constant  equilibrium potential  is shown in 

Fig. 5, and  some numerical  values are listed in Table 7. Clearly, geq is 

directly proport ional  to 70 as long as neither ?o nor  ~1 exceed 0.1, a result 

which also follows f rom the use of Eq. (I-55) which is applicable at such 

low concentrat ions:  

Yo -- ?~ - ?~176 (41) 
g~q- 1 1 - e  -~q 71-~o 

o 

For  70 ~71 <0.1,  either this result or use of Eq. (I-59) leads to 

geq = ?o. (42) 

Conversion of this result into dimensional form yields 

G n 2 F 2 D 
- -  ( 4 3 )  

Co R T d  
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which suggests a numerical value of the order of t 0  7 c m  fZ -~ mole -~ at 
room temperature if one assumes D = 1 0 - 6 c m 2 s e c  -1 and d = 5 0 A .  In 
Eq. (36), G denotes the intrinsic equilibrium conductance, in f~-~ cm -2, 
and Co the interracial concentration of ions just inside the membrane, in 
moles cm-3. Note that, at least in principle, Eq. (42) allows us to estimate 
the single-ion partition coefficient from the intrinsic membrane conduc- 
tance, the bulk ionic concentration in the aqueous phase in contact with 
the membrane, and the membrane charge density. 

At high concentrations, geq approaches the limiting value 4 n 2, regardless 
of the value of the equilibrium potential Voa. This follows directly from 
substitution into Eq. (37) of the high-concentration approximations b-,  n 

! /Wo 
a n d p ~  n V 2 of Eqs. (I-61) and 0-62). Thus, 

g~im = 4 rc 2 (44) 
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Fig. 3. Profiles of dimensionless concentration ;,, field E and potential e across the 
membrane (0 < s < 1) for ;'o = 1, 7'1 = 10 2 and various values of i as indicated with each 

curve. The curves were calculated from the data in Table 6 

and 
~zD~ 

G l l m = ~  (45) 

which leads to an est imated limiting intrinsic m em b ran e  conductance  of 

the order  of 50 ~ - 1  cm-Z when one assumes D = 1 0  -6 cm z see -1, erol=2 

and  d =  50/~. The  limiting conductance  occurs because, at high ionic con- 

centrat ions,  an  increase in 7o and 71 is accompanied  by  a compensat ing  

decrease in the thicknesses of the space charge layers inside the membrane .  

Eqs. (43) and (45) were already obta ined by Neumcke  and  L/iuger 

(1970), who only considered the case A <0.  
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Results for  Low Ionic Concentrations: 

The Constant-Field Approximation 

For  low ionic concentrations (~ ~1), the mathematical  treatment can 
be simplified greatly (Mott,  1939). We combine Eqs. (I-6) and (I-8) into 

-y+�89 EZ=is+ A. (46) 

For  small values of both V and i we have 

�89 E z ~ A (47) 

so that  the field E is approximately constant, and integration of d~o/ds = - E  
for constant E yields 

v - q ~  -~0o~ - E .  (48) 



186 

I 
V 

o~ 

R. de Levie et al. : 
i i i l | i i 

- 2 0  

- 5 0  

-75  

-5[-" 

t 
0 

I I t I I I I 
S~ 

Fig. 3 C 

We now combine this result with Eq. (34) 

_ i=  ~_~_~s- ? dOds dVds t -ET=~-s  - v 7  

which can be written as 

( i) =d(vs) dln 7 -  7- 

and can thus be integrated (Mott ,  1939) to yield 

7= % - T  -7" 

Substitution of 7 = 7, at s = 1 results in 

71 = 70-  7 eV+ 

t 
1 

(49) 

(50) 

(51) 

(52) 
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Fig. 4. Profiles of dimensionless concentration 7, field E and potential ~ across the 
membrane (0=<s< 1) for 70 = 71=102 and various values of i as indicated with each 

curve. The curves were calculated from the data in Table 5 

f r o m which i / v  can be el iminated to obtain (Cole, 1965) 

~,= (~'o- ~1) eO ~+Vl -Vo e" 
1 ~ e v 

One readily verifies that  the equil ibr ium condi t ion 

Eq. (53) into Eq. (I-55). 

Finally, the intrinsic conductance  g is obta ined f rom 

1 (Yl - 7 0  eV) v 

g =  i d s  - (1 -e~) (v - ln~ l /7o )  " 

o 7 

(53) 

71 =~o e  v converts  

(54) 
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The same result can also be derived from Eq. (52) since 

so that 

i ~1-7o e~ (55) 
v 1 - e  ~ 

i i v 71 --~]o eV v 
g= v-vr v v-v~q l_eV v_ln71/7 ~ (54) 

Using Eq. (55) one can calculate v for any given values of 70, ~1 and i 
(e.g., with a Newton-Raphson approach), and subsequently find g from 
Eq. (54). Intrinsic conductances thus calculated are compared with the 
more exact computer calculations (which do not assume constancy of E) 
in Tables 1 through 6. For symmetrical boundary concentrations, ~o = ~1, 
Eq. (54) reduces to g = 7o [compare Eq. (42)] whereas for vanishingly small 
currents, g approaches 7oVeq/(1 -e-Voq) [see Eq. (41)]. 



Single Ion Transport through Membranes. II 189 

i 

-5 

O 
I I , , ,  I I I I I I 

$ . -b  

Fig. 4 C 

The data in Tables 1 and 2 show that the constant-field approximation 
provides an excellent representation of the data for ? 41, and the same 
conclusion can be drawn from Fig. 1. The constant-field approximation 
will still be adequate for most purposes when ? ~< 1 (see Tables 3 and 4 and 
Fig. 2). 

Results for High Ionic Concentrations 

For 7>>1, the constant-field approximation is no longer applicable. 
With symmetrical inteffacial concentrations, ?o = ?2, the intrinsic membrane 
conductance remains essentially constant and equal to its equilibrium value 
geq even though the concentration profiles are affected by the flow of 
current (see Fig. 4). 

13a J. Membrane Biol. 10 
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Fig. 5. The dimensionless equilibrium conductance g~q as a function of 7o and of the 
ratio ?0/71 as indicated with each curve 

For the asymmetric case (see Fig. 3), g is not constant but varies less 
(as a function of v) than at low concentrations. The data suggest that the 
intrinsic membrane conductance becomes essentially constant (and thus 
equal to the limiting value of g~q) at sufficiently high ionic concentrations. 

Discussion 

The foregoing calculations and numerical examples have illustrated the 
essential features of the simple model used: ions of one kind permeating 
under the influence of a gradient in the electrochemical potential through 
a thin, homogeneous film. Eqs. (25)-(31) complete the earlier results of 
Skinner (1955) who did not consider the mixed cases and consequently 
appears to have reached an erroneous conclusion as to the origin of the 
negative impedances. Perusal of pairs of i and A listed in Tables 1-6 shows 
that all but Table 1 contain at least one example of the mixed case. (In 
Table 1, such a transition will occur between i = 2  x 10 .4 and i = 2  x 10-3.) 
The application of a sufficiently high voltage (and the corresponding passage 
of current) to an otherwise symmetrical ionic distribution can render the 
membrane sufficiently "asymmetrical"  to make A positive. Thus, the 
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symmetry considerations implied in the present paper as well as in Part I 
must  be used with care. 

For  low ionic concentrations in the membrane (~ ~1), the constant- 
field approximation provides an excellent description of the electrical prop-  
erties of the membrane.  However, this approximation is not  valid at ? > 1. 
Under  symmetrical boundary conditions, 7o = 71, the conductance is essen- 
tially constant and equal to its equilibrium value, even for ~ + 1. The 
equilibrium conductance exhibits a limiting value. 

The present description of the "passive" electrical response of a con- 
ducting membrane is still quite incomplete. In Part III  we will therefore 
incorporate the above results in a discussion of the membrane plus its 
adjacent solution layers, and in Part IV we will focus on the transient 
response. 
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